Fire Safety on Boats

Boat fires have killed 30 boaters in the last 20 years. A fire on board, most of the time, can be preventable. Proper maintenance, regular inspections, and adherence to safety protocols significantly reduce the risk of fire. Ensuring electrical systems are up to date, monitoring fuel systems for leaks, and having fire extinguishers readily accessible can mitigate potential hazards. By prioritising prevention and encouraging awareness, we can work towards eliminating fires and preserving lives on the water.

Carbon Monoxide on Boats

Many people are unaware of the effects, symptoms and dangers of carbon monoxide (CO). Known as The Silent Killer, it is a colourless, odourless, tasteless gas which is highly toxic to humans and animals. The only way to detect CO is with an audible carbon monoxide alarm.

CO is generated by the incomplete combustion of fossil fuels. Most commonly associated with appliances such as; boilers, heaters, hobs and generators. Even routine activities like cooking or keeping warm can potentially lead to a build up of this deadly gas. It is important to ensure that all appliances are properly maintained and regularly serviced to minimise the risk of carbon monoxide poisoning.

Recognising the symptoms of carbon monoxide poisoning is also vital for staying safe on board. Symptoms such as headaches, dizziness, nausea, weakness and confusion may indicate exposure to elevated levels of carbon monoxide. It’s essential for boat owners and passengers to be aware of these signs and to take immediate action.

Fire Extinguishers for Boat Safety

There are different fire risks on boats so it is essential that you have the correct extinguishers to deal with the different types of fire that may occur. Regular maintenance of all your electrical appliances and engine are important to help prevent potential fire hazards.

Powder fire extinguishers are suitable for an outdoor fire on a boat, such as an engine fire. Engine fires on boats can involve a variety of fuel sources, including gasoline, diesel, oil, making powder extinguishers suitable as they can extinguish a wide range of fire types. However, they are not recommended for indoor use due to reduced visibility. The water mist fire extinguishers would be ideal for an indoor boat fire. Water mist extinguishers are versatile; suitable for use on Class A and B fires as well as fires involving electrical equipment. They leave no residue and are environmentally friendly.

Smoke Alarms for Boat Safety

Smoke alarms detect smoke and sound an alarm to alert people on board of a fire. In a marine environment where fires can spread rapidly and evacuation options may be limited, early detection is critical. Boat owners should ensure that smoke alarms are installed in key areas to make sure a boat fire can be detected as soon as possible. Key areas include sleeping quarters, engine compartments, and galley areas where fire hazards are most prevalent.

Maintenance and testing of smoke alarms is important to ensure proper functionality to get alerted in the event of a fire. It’s recommended to test your alarms monthly, and to clean your alarms regularly as a build-up of dust can impact their performance.

When selecting smoke alarms for your boat, make sure to choose models specifically designed for boats. These are designed to withstand the unique challenges posed by constant exposure to moisture, saltwater, and vibration. It’s also wise to consider the size and layout of your vessel and determine the appropriate number and placement.

House, caravan, campervan and boat travel icons on carbon monoxide alarms
To determine whether your alarms are suitable for travel, look out for the following symbols and certification to (BS) EN 50291-2

Smoke Alarms for Boats

UltraFire ULLS10 – https://www.safelincs.co.uk/ultrafire-ulls10-10-year-longlife-battery-optical-smoke-alarm/
FireAngel 6620 – https://www.safelincs.co.uk/fireangel-fa6620-r-10-year-lithium-optical-smoke-alarm/

Concerns over fire safety for e-bikes and e-scooters

In recent years there has been an increase in the number of electric powered bikes and scooters being purchased. Along with the number of publicly available e-bikes and e-scooters this has created concerns over fire safety. The reports of fires starting has increased, usually when the battery is being charged, raising a number of concerns of the quality of some of the bikes and scooters available to buy.

While in general the benefits are clear; speed of travel (compared to walking), convenience, reduced environmental impact compared to other modes (such as cars) and reduced transport costs. It is likely that in time, privately owned e-scooters would be legal to use on public highways and play a role in future urban transport. Therefore, it is important to make sure that the bike or scooter that you are buying is of good quality.

Things to consider before making a purchase

  • Do your research, look online or in store to see which e-bikes and e-scooters have had good reviews and the ones that haven’t so you can make an informed choice on the best one to buy within your budget.
  • Buy from a reputable retailer for all the components, including battery pack and charger.
  • When purchasing replacements parts, ensure these are purchased from the same manufacturer.
  • Register the product with the manufacturer – to be notified quickly of any safety issues or recalls.
  • Be cautious if buying second-hand, refurbished or converted bikes. It can be hard to establish reliability, whether it is counterfeit or genuine, and whether they meet proper UK standards. Look for CE or UKCA marking.

Tips for safer charging of batteries

  • Do not store or charge batteries in communal areas, especially if they form part of the escape route.
  • If the battery is hot after use, allow it to cool before putting on charge.
  • Do not overcharge the battery – check the manufacturer’s instructions.
  • Do not cover chargers or battery packs when charging as this could lead to overheating and possibly fire.
  • Keep batteries out of direct sunlight.
  • Do not overload sockets or extension leads – ensure the extension lead is suitably rated for what you are using it for.
  • Do not charge batteries overnight or while you are away from home. If a fire should start you will be alert and aware.
  • Regularly check your batteries and chargers, and do not use them if there are any signs of damage; replace them immediately.
  • If you regularly recharge batteries, or have several on charge at once, consider installing a Lithium-Ion Battery Containment Safe, or ask your landlord for one.

Warning signs of danger to look out for

  • Heat – it is normal for batteries to generate some heat when charging or in use. If it feels extremely hot to the touch, stop charging straight away.
  • Bulging or leaks – a common sign of a battery failing is bulging or swelling. If you see this you should stop using it immediately.
  • Noise – failing lithium batteries can sometimes make hissing or cracking sounds.
  • Smell – a strong or unusual smell from the battery could be a sign that it is failing.

Requirements for Fire Detection Systems in HMOs

What is an HMO?

HMOs are typically large houses that have been converted into flats or bedsits, such as student housing. ‘Houses in multiple occupation’ are defined by gov.uk as follows:

Your home is a house in multiple occupation (HMO) if both of the following apply:

  • at least 3 tenants live there, forming more than 1 household
  • you share toilet, bathroom or kitchen facilities with other tenants

It is important to note that the requirements for sheltered housing, such as supported living facilities, and self-catered rentals, such as holiday cottages are different, and not covered in this blog.

Kitchen facilities are often shared in HMOs
Shared kitchen spaces are a fire risk in HMOs

What grade of smoke alarm system is required for HMOs?

Within most HMOs, there are several acceptable options available for compliance with the Standard, depending on its size and configuration. 

The first option is to have Grade A fire alarm system installed throughout the building. This type of system consists of a conventional or addressable fire alarm panel, and then fire alarm detectors, call points, sounders and beacons are specified according to the layout and requirements of the property and manufactured to BS EN 54. It also requires a power supply to BS EN 54-4, and installation to BS 5839 Part 1.

However, in most cases, this level of coverage is not a requirement. In some small HMOs, for example, it may be acceptable to install a Grade D1 system. This is defined as a system incorporating one or more interlinked mains-powered smoke alarms (and heat alarms if required), each with an integral stand-by supply. They can be hardwire-interlinked or radio-interlinked, meaning that fire alarm panels are not required. The stand-by supply must be tamper-proof and last the full life of the alarm.

The final option, suitable for many medium and even large HMOs, is a mixed system. This involves the installation of Grade A components in communal areas, and any other high-risk areas identified by the risk assessment. Elsewhere in the premises, a separate Grade D1 system can be installed. This has become the preference, as it is likely to reduce the impact of nuisance alarms from individual flats on other occupants.

Ei Electronics and Kidde offer both RF and wired mains powered alarm systems as well as a range of accessories that can help you to test, locate and hush alarms easily. For more guidance about the alarm grade system, visit our help guide.

Mains Powered Smoke Alarms with Lithium Back-up Ei3000 Series
Mains Powered Smoke Alarms with Lithium Back-up Ei3000 Series
  • Available in Optical, Heat, Combined Optical & Heat, and Combined Heat & CO
  • Mains powered alarms with sealed lithium back-up battery
  • AudioLINK technology fitted as standard
  • Interlinks with up to 12 compatible devices
  • Compatible with Ei3000MRF SmartLINK Module for radio-interlinking
  • Suitable for BS 5839-6: 2019 Grade D1 installations
  • Also suitable for both the Welsh and Scottish 2022 legislation
£44.99 ex VAT
£53.99 inc VAT
Buy Now

Fire detection categories

The coverage within the building by the detection system is divided into three distinct categories. These are described with the following codes:

LD1 (highest level of coverage): Covers all circulation spaces that form part of escape routes plus all rooms in which a fire could start

LD2 (middle level of coverage): Covers all circulation spaces that form part of escape routes plus all rooms and areas that present a high fire risk to occupants

LD3 (lowest level of coverage): Covers circulation spaces that form part of the escape routes

Diagram showing levels of fire detection systems in HMOs

Any room which a building user must pass through, from another, in order to exit the premises would need detectors installed to satisfy these Categories. For example, if all rooms in a bungalow open onto a hallway which leads outside, only the hallway is considered a circulation space forming part of the escape route; if the only exit from the kitchen is into the dining room which then opens onto a hallway, the dining room would also need a detector under LD3 minimum protection as it is part of the escape route.

What category of fire detection is required within my HMO?

Different levels of coverage are needed in different areas of the building due to the risk of fire. This includes different Grades of fire detection system, as well as different configurations of components. For example, communal areas in HMOs are required to have Grade A systems, as they have particularly high levels of risk. This is due to the shared, and therefore often neglected responsibility for safety and housekeeping in HMOs. Moreover, the exact installation requirements within your HMO will depend upon the configuration and size of the premises. For more advice for landlords about fire safety in HMO’s, visit our help guide.

Messy kitchens are a health risk, and a fire hazard.
Responsibility for housekeeping can be neglected in HMOs. This is a fire risk,

Minimum levels of requirements for fire detection systems in HMOs:

The following is general guidance on the minimum levels of installation required in different scenarios.

One or two storey HMOs, where the area of each floor is less than 200sqm:

A Grade D1, category LD1 configuration should be installed in a new, or materially altered HMO. In an existing premises of this size, category LD2 is acceptable if it is already installed, but an LD3 system must be upgraded to comply with the Standard.

Areas within HMOs with more than 3 floors, or where the area of at least one floor is greater than 200sqm

Individual, one-room dwellings, with or without cooking facilities:

A Grade D1, category LD1 configuration should be installed. This is required in a new and existing HMO premises.

Individual dwellings comprising two or more rooms:

A Grade D1, category LD2 configuration should be installed. This is required in a new and existing HMO premises.

Communal areas

A Grade A, category LD2 configuration should be installed. This is required in a new and existing HMO premises.

Suitable Fire Detection Systems in HMOs

Always ensure that a comprehensive fire risk assessment has been carried out in your property by a competent person, to determine the risks specific to your premises. This is essential to protect the occupants, particularly as many tenants of HMOs are young and / or vulnerable renters. The Responsible Person for the building may be prosecuted if they cannot demonstrate that they have made every reasonable effort to comply with fire safety requirements enforced by their local council, particularly if a fire breaks out. Compliance with the Standards is the best way to ensure that this compliance can be achieved and evidenced.  

For additional guidance, please visit our Smoke Alarm Help and Information and BS 5839 summary page.

What to do if my Carbon Monoxide alarm goes off?

CO detectors, or carbon monoxide alarms, are essential for the detection of a deadly gas, carbon monoxide (CO). This gas cannot be seen, tasted or smelt and is only detected with the use of co detectors. It is produced through the incomplete combustion of fuel, such as gas, wood, coal and oil. If your carbon monoxide alarm is going off, do not assume it is a false alarm.

What to do when your carbon monoxide alarm is going off

You should assume that there is CO present and should follow these steps to ensure your safety.

  • Stay calm, open doors and windows to increase ventilation
  • Where safe to do so, turn off any fuel-burning appliance
  • Leave the premises and notify other occupants of the potential carbon monoxide leak (you should also notify any occupant of premises adjoined to your home as CO can seep through walls and floors
  • Call Gas Emergency Services 0800 111 999 or a local Gas Safe Registered Engineer to check for the source of carbon monoxide
  • Get medical help for anyone suffering from symptoms of CO poisoning

Symptoms of carbon monoxide poisoning

The main symptoms of carbon monoxide poisoning are:

Carbon monoxide poisoning symptoms: persistent headaches

Persistent Headaches

Having persistent dull headaches and tension type headaches.

Carbon monoxide poisoning symptoms: dizziness

Dizziness

Having waves of dizziness or feeling light headed and off balance.

Carbon monoxide poisoning symptoms: nausea/vomiting

Nausea / Vomiting

Feeling like you need to be sick (nausea) and actually being sick (vomiting).

Carbon monoxide poisoning symptoms: stomach pains

Stomach Pains

Pains in your stomach or lower abdomen, sometimes accompanied by diarrhoea.

Carbon monoxide poisoning symptoms: difficulty breathing

Difficulty Breathing

Sudden shortness of breath or difficulty breathing (dyspnoea).

Carbon monoxide poisoning symptoms: tiredness

Tiredness

Having no energy or feeling tired, sleepy, lethargic and sluggish.

Carbon monoxide poisoning symptoms: sudden collapse

Sudden Collapse

Sudden collapse, seizures or loss of consciousness.

Carbon monoxide poisoning symptoms: confusion

Confusion

Confusion, difficulty concentrating and becoming easily irritated.

What causes CO detector false alarms?

A false alarm is when your CO detector alarms and where no carbon monoxide is detected by your engineer. There could be several reasons for this, which can often be easily resolved:

Cause of alarmWhat to do
The carbon monoxide detected did not come from your own appliances but may have seeped through the walls or floor from a neighbour.Check if your neighbours have fuel-burning appliances that might emit carbon monoxide. Carbon monoxide might escape from chimney stacks allowing the toxic gas to enter your premises via a joint loft space.
The replace-by date may have been exceeded.Most CO alarms are only effective for 5-10 years. Once expired, they can sound erratically, or not sound when they should, The expiry date for each unit can be found on the information sticker on the back of the unit.
Excessive moisture from a bathroom may set off your CO alarm.CO alarms can be corrupted by steam, and therefore shouldn’t be installed in bathrooms. If your CO alarm is repeatedly triggered by steam, it may become ineffective, and should be replaced.
Lead acid battery chargers produce hydrogen gas which sets off CO detectors.If you are charging your caravan or boat battery at home, this could set off your CO alarm. Once you have made sure that the alarm is false, it is safe to ignore the alarm in this scenario, but remain vigilant for other signs. If this happens often, invest in a CO alarm with a digital display to assess the level of risk when the alarm sounds.
Freshly screeded floors emit a gas that sets off carbon monoxide alarms.If your floors have just been screeded, and you have made sure that the alarm is false, it is safe to ignore the alarm in this scenario, but remain vigilant for other signs.
The carbon monoxide alarm that you have installed may not be suitable for the type of premisesFor example if it is installed in a caravan, tent, boat or living quarters of a horsebox you will need to ensure that your alarm is Kitemarked to BS EN50291-2. Alarms tested to BS EN50291-1 are only for use in home environments and are not suitable for camping and caravanning.
Smoking indoorsA heavy smoker in a poorly ventilated room the CO from smoking may trigger an alarm. It is recommended to open a window if possible to improve ventilation. If this happens often, invest in a CO alarm with a digital display to assess the level of risk when the alarm sounds.
Homes that are adjacent to very busy roads may experience higher levels of CO in the home when windows are open as traffic fumes may enter the room and set your alarm off.If this causes persistent false alarms, invest in a digital CO alarm, allowing you to see a live CO reading. You can then determine the level of risk. For example, if the reading is high, there is probably a leak. However, if it has just tipped over the threshold due to air pollution, the alarm can be ignored/silenced without having to get an engineer in to check for a leak.
The sound that your alarm is making may not be the alarm sound to alert you that there are dangerous levels of CO present.Most alarms have several audible sounds to indicate things such as low battery warning or that there is a fault with the alarm. Keep the manual safe so that you can refer to it should the alarm go off.

Buying a CO detector

You should have a carbon monoxide detector in every room where there is a solid fuel burning appliance. Only chose CO detectors that have met the rigorous testing standards of the European standard EN50291. These alarms provide peace of mind that this vital alarm has been manufactured and tested to the highest standards. Moreover, investing in a CO detector with a digital display also provides peace of mind, as it allows you to assess the situation when an alarm goes off. This is particularly useful if you have had persistent false alarms due to pollution, smoking, or other external factors, as it allows you to check the reading to assess the level of risk before calling an engineer to check for a leak.

For more information about taking a carbon monoxide detector on holiday, read our blog on this ultimate travel essential, and what to do if you detect a leak.

Kidde Carbon Monoxide Alarm - 7DCO / 7DCOC
Kidde Carbon Monoxide Alarm - 7DCO / 7DCOC
  • Product Life: 10 years
  • Battery: replaceable AA alkaline batteries included
  • Warranty: 10 year warranty
  • Displays CO levels from 10ppm
  • Peak Level Memory - recalls highest CO levels
  • Ideal for domestic use and camping, caravans & boats
  • Kitemarked to BS EN50291-1 and BS EN50291-2
  • Also suitable for the 2022 Welsh legislation
£15.21 ex VAT
£18.25 inc VAT
Buy Now

If you are unsure if you have the correct carbon monoxide alarm installed our customer care team are here to help. You can call them on 0800 612 6537 or email support@safelincs.co.uk.

Angie Dewick-Eisele

Director

Angie Dewick-Eisele is co-founder of Safelincs Ltd, one of the leading fire safety providers in the UK. Angie was Marketing Manager for many years and as Director is these days responsible for Content Management.

Managing False Alarms

Managing false alarms is a public safety issue. As reported by the BBC, in 2020 the Chief Fire Officer (CFO) at Lincolnshire Fire and Rescue – Les Britzman – asked business owners to take more care and responsibility in managing false alarms. Provided that there are no hazardous materials in the premises and there is no immediate risk to life or the community, the CFO stated that organisations should “have systems in place to go and check those buildings themselves” before calling 999 if a fire is discovered.

Despite this, a National Statistics report shows that FRSs in the UK attended 246,529 fire false alarms in 2023. This was a 3.1% increase on the previous year, and a 6.3% increase on figures 5 years ago. Last year (2023) saw the largest number of false alarms attended since 2011. This diverts essential resources from real emergencies and puts people at risk due to avoidable blue light journeys.

Islington Fire Station, London.
Islington Fire Station, London. The station is part of the London Fire Brigade network of emergency responders.

Further to wasting public resources, management and mitigation of false alarms ensures that time is not wasted by needless evacuations. Unnecessary evacuations may cause downtime of machinery, and potentially a loss of earnings. If false alarms are allowed to persist, there occupants may become desensitized to the sound. This puts lives at risk, as in a real emergency, occupants may fail to react properly.

The importance of managing false alarms

BS 5839 Part 1, the Code of Practice for design, installation, commissioning and maintenance of fire alarm systems in non-domestic premises, has a focus on managing false alarms. Therefore, managing fire alarms is recommended for organisations to demonstrate that they are acting responsibly to prevent fires.  To achieve this, the Responsible Person must ensure that all false alarms on a system are logged. Each false alarm must also be investigated for a root cause, which must be addressed. Mitigating work must be undertaken as necessary to prevent the same incident occurring again. To learn more about this Standard, see our summary of BS 5839-1: 2017.

Should a real fire occur, documentation including a record of, and mitigation work following past false alarms will be required during the investigation. The maintenance of these records is not a legal requirement. However, correct documentation can prevent prosecutions of negligence. It is also highly likely that insurers will require these records when processing a claim.

How to prevent false alarms

Preventing false alarms can be as simple as fitting flip covers to manual call points to prevent accidental activations. Indeed, this is now a recommendation in the Standard, though not a requirement. However, if a false alarm occurred because a manual call point was accidently triggered, the need to mitigate against repeat occurrences may necessitate their installation.

Fire Alarm System Testing & Maintenance
Functional testing of point smoke detectors with a Solo aerosol dispenser and access pole.

Another fundamental part of managing false alarms in existing fire alarm systems is to ensure they are maintained. This includes regular testing, inspections, and servicing. This will reduce the risks of false alarms caused by faulty or improperly installed equipment, as well as ensuring that the system is effective in an emergency.

Premises with a change of use should be professionally inspected to identify whether the existing fire alarm system remains suitable. For example, replacing optical beam detectors with a system of point heat detectors would prevent false alarms in a storage warehouse that has been converted into a factory with machinery that creates a lot of dust.

Optimising new fire alarm systems

For new fire alarm systems, during the design stage the full details of the Fire Risk Assessment, the building, and its intended / current use should be made available. This ensures that the most suitable types of detector can be selected, and positioned in the correct way. Suitable detectors in the correct locations are one of the easiest methods for managing false alarms. For example, installing an optical smoke detector near kitchens or bathrooms could result in false alarms due to steam from cooking or baths and showers.

Identifying design shortcomings is not generally the responsibility of an installer. However, the Standard does state that any issues noticed during installation – particularly those arising from features of the building that might not have been known to the designer – should be brought to the attention of the designer or Responsible Person.

Fire Risk Assessments must be kept up to date and carried out by a competent person.
Fire alarm systems should be tailored to the building. It should account for the risks identified in the building’s fire risk assessment.

False alarms put unnecessary strain on UK fire services, diverting essential resources away from real fires, and putting lives at risk. Managing false alarms is in the interest of organisations as it prevents disruption.

Safelincs provide nationwide fire alarm system servicing and maintenance contracts at competitive pricing. View our Servicing and Maintenance page or call our Servicing team on 0800 612 4827 for more information.

Daniel Bennett

Senior Product Manager

Daniel is our Senior Product Manager. He has a wealth of knowledge when it comes to emergency lighting, fire alarms, smart products, and fire extinguishers.

Latest Posts by Daniel Bennett

Managing False Alarms19th March 2024

Reasonable Adjustments in Schools

According to the Equality Act 2010, schools and educational premises have a duty to make reasonable adjustments where necessary for anyone with a disability. So, what is a reasonable adjustment in schools? And, what can schools and universities do to improve access for all and meet fire safety requirements in education?

What is a reasonable adjustment?

The Equality Act 2010 tackles disability discrimination in schools and other organisations or businesses across society. It sets out a responsibility to remove barriers experienced by someone who has a disability. Anyone who has a disability should be able to receive the same service as far as possible as someone who is not disabled. What is considered a ‘reasonable’ adjustment will depend on things like the size of the organisation, and the money and resources available. It will also depend on the needs of the individuals who attend the setting.

Reasonable adjustments and fire safety in education

According to current fire safety regulations, it is the duty of the Responsible Person for the building to provide a fire safety risk assessment that considers the needs of all of its users. It should contain an emergency evacuation plan for all people likely to be on the educational premises. This includes anyone who is disabled or has additional needs. The Disability Discrimination Act 1995 (DDA) also supports these regulations.

Evacuation chairs are a reasonable adjustment
An EVAC+CHAIR can be used to safely evacuate anyone with a permanent or temporary mobility impairment in an emergency

The reasonable adjustments in schools need to meet legal requirements for disability and fire safety, and depends on what is set out in your fire risk assessment. It will also depend on the needs of the individuals who attend your school or university.

What examples are there of reasonable adjustments in schools or higher education establishments for fire safety?

A reasonable adjustment can be:

  • A change to the way things are done such as a change to a rule or policy. For example, this might involve a change to an escape route.
  • A change to a physical or architectural feature in a building or outside areas. This could include using a fire door retainer on internal fire doors to allow easier access for all or installing visual fire alarm beacons with louder audible sirens for anyone who has a hearing impairment.
  • Provision of extra services or aids. This could include providing an evacuation aid such as an evacuation chair.

The type of changes and extra aids or services will depend entirely on your circumstances and the needs of the individuals who attend your school or university. Fire safety requirements will be set out in detail in your fire risk assessment and should be implemented.

Fire door retainers and the Equality Act 2010

Fire door retainers such as Dorgard are a cost-effective and easy to install solution for improving access for all in schools and universities. Fire doors are a necessity in many buildings but can be a barrier to anyone with a mobility impairment as they are heavy to operate and difficult to manoeuvre in a wheelchair.

fire doors in education
Fire door retainers can improve access for anyone with a mobility impairment

Dorgard is certified and tested to British Standards EN1155:1997 and EN 1634. It is a legal solution for holding open fire doors. This allows easier access for everyone including any disabled users with a mobility impairment. When the fire alarm sounds in your building, Dorgard will release the fire door so that it closes and provides the usual protection. You should never wedge or prop open fire doors using an uncertified device or object. The fire doors will be unable to provide any protection if they are open when a fire starts.

Fire door retainers can be a reasonable adjustment
Dorgard Fire Door Retainers are widely used in education

The University of London’s College Hall has found Dorgard to be an effective solution to accessibility in their building.

“The Dorgard offers a low energy automatic door solution that proved to be the most cost-effective way of improving access and independence for wheelchair users.”

University of London’s College Hall

Mel Saunders

Head of Marketing

Mel joined Safelincs in 2020 and leads the content and marketing team.

Everything you need to know about cooking oil fires

According to the National Fire Protection Association (NFPA), cooking equipment is the leading cause of house fires, with unattended cooking being the primary culprit. Cooking oil fires, in particular, pose a unique challenge due to the intensity and rapid spread of the flames.

Cooking oil fires are difficult to extinguish if you don’t have the right equipment at hand. The powerful jet of some fire extinguishers could spread the oil fire. Using water to extinguisher oil fires can cause the fire to erupt violently. Therefore, it is important to have the correct equipment to tackle kitchen fires

Tackling Cooking Oil Fires at Home

How to put out a Cooking Oil Fire

Pan fires can be tackled with fire blankets and fire extinguishers. A water mist fire extinguisher is versatile, and therefore can tackle all types of kitchen fire including fires involving electrical equipment up to 1000 volts. A fire blanket is a good option for most domestic kitchens, as generally smaller amounts of oil are used. A fire blanket is placed over the pan fire to smother it and starve the fire from oxygen.

For larger deep fat fryers in your home, we would recommend a wet chemical fire extinguisher which holds a 25F rating. The wet chemical extinguisher is made specifically for tackling larger quantities of oil on fire.

Where to put a Kitchen Fire Extinguisher

In the case of cooking oil fires, having a fire extinguisher within easy reach can be a lifesaver. Mount the extinguisher in a visible and easily accessible location, away from the stove but still within close proximity to the cooking area. We recommend placing your fire extinguisher near the kitchen exit, ensuring a quick and unobstructed path to safety. Avoid placing it too close to potential fire hazards, such as curtains or wooden cabinets.

Tackling Cooking Oil Fires at Work

If you work in a commercial kitchen with deep fat fryers, a wet chemical kitchen fire extinguisher is usually recommended. Wet chemical fire extinguishers are specifically designed to put out cooking oil fires and therefore should be kept in kitchens for commercial use. The wet chemical fire extinguisher forms a foam blanket on top of the oil which stops the supply of oxygen, therefore extinguishing the fire. Fire blankets are also a useful addition in a commercial kitchen as they can be used on pan fires, cooking oil fires, waste basket fires and also clothing fires.

What to do in a Kitchen Fire

  • Stay calm
  • Turn off the heat source (if possible)
  • If the fire is not too big, use your fire extinguisher or fire blanket to try and extinguish the fire 
  • Call emergency services
  • Move anything else that could catch fire away from the burning oil if you can
  • Make sure children and pets do not come near the fire
A man cooking starts a cooking fire.

How can Cooking Oil Fires be Prevented?

To avoid cooking oil fires, never leave cooking unattended and pay attention to cooking pans and deep fat fryers at all times, especially when cooking with oil. Keep the area clean from grease buildup, as accumulated grease can be a potential fuel source for fires. In the event of a small grease fire, never use water to extinguish it. Instead, cover the pan with a fire blanket or use a fire extinguisher for kitchen fires. By adopting these preventive measures, you can significantly reduce the likelihood of cooking oil fires and enhance the overall safety of your kitchen.

For further advice on fire prevention in your home, complete the Home Fire Safety Check. Get personalised tips and a fire safety action plan to help you and your family to stay safe.

Why are fire drills important?

Conducting regular fire drills in the workplace is essential in order to practice for a safe evacuation during a fire. Fire drills go beyond compliance with regulations; they are the heartbeat of safety culture within organisations. Not only do they ensure that all staff, customers and visitors to your premises understand what they need to do if there is a fire, but they also help you to test how effective your fire evacuation procedure is.

What is a fire drill?

A fire drill is an organised procedure to simulate the steps you should take in the event of a fire. Its primary function is to ensure that all individuals in the building are familiar with escape routes, emergency exits and safety protocols. A fire drill educates and prepares occupants for a swift evacuation in the event of a real fire. A fire drill usually involves sounding the alarm system, evacuation to designated assembly points and coordination with emergency responders.

Regularly practicing fire drills enhances your readiness and response in the event of a real fire, which contribute to a safer environment for everyone involved.

Life or death

Imagine a fire starts. The company does not conduct regular fire drills. Everyone is panicking and doesn’t know what to do as part of the fire evacuation procedure. However, an organisation or even a household that conducts regular fire drills remains calm. Instinct kicks in from the fire drill practice to follow the fire evacuation procedure. This can be the difference between life and death.

Why should I do fire drills?

  • Be prepared in the event of a fire
  • Familiarity with evacuation routes
  • Test emergency systems
  • Calm response in the event of a fire
  • Identify weaknesses in fire evacuation procedure
  • Builds a ‘safety-first’ culture
  • Strive for continuous improvement 
  • Comply with regulations

‘You need to train new staff when they start work and tell all employees about any new fire risks.

You should carry out at least one fire drill per year and record the results. You must keep the results as part of your fire safety and evacuation plan.’ GOV UK

Testing Safety Equipment

Your fire drill not only gives people a routine to ensure their safety, it also gives you the opportunity to make sure essential fire safety equipment is in working order. Fire safety equipment includes alarm systems, fire door retainers, emergency lighting and evacuation equipment. In the event of a real emergency, all fire safety equipment must be working to evacuate timely and to prevent the spread of fire.

If, while undergoing a fire drill, you find that your fire safety equipment isn’t working; get it fixed or replaced as soon as possible to give your business the best chance of being protected.

How often should you do fire drills?

Yearly fire drills are a legal requirement for all businesses. However, Health and Safety Executive (HSE) recommends having a few fire drills each year to enhance safety measures and better prepare for potential emergencies. While the minimum legal standard is an annual fire drill, more frequent exercises, such as quarterly or semi-annual drills, can significantly improve the effectiveness of emergency response plans.

Fire Drill Roles & Responsibilities

Designating key roles to individuals during your fire drills helps streamline the evacuation. Fire Wardens oversee the evacuation process and check designated areas, while Evacuation Marshals are responsible for guiding people to safety. Someone should also be assigned to account for all individuals at the assembly points to ensure that everyone has safely evacuated the building. Clearly defining roles and responsibilities in advance ensures confidence in individuals that there is a well-coordinated plan in place.

What are COSHH regulations?

COSHH (Control of Substances Hazardous to Health) regulations were put in place to protect workers from poor health in the workplace. Many materials and substances used in the workplace can be harmful to human health and therefore it is important to limit the exposure. COSHH regulations require employers to identify harmful substances in the workplace and put measures in place to protect employees.

What are COSHH hazardous substances?

COSHH covers the different forms of hazardous substances; liquids, dusts, gases, vapours, mists and fumes. COSHH substances can cause problems to human health causing issues such as such as skin damage, asthma, lung damage, cancer and more. Effects such as stinging or dizziness when exposed to COSHH substances can be immediate. However, some can take years to develop like lung disease.

In the workplace you can often be exposed to different forms of hazardous substances without even knowing. Here’s a few to look out for:

Liquids – Found in cleaning products, fuels, pesticides, processed chemicals, liquified gases

Dusts – Found in wood, concrete, bricks, glass, grains, flour

Gases – Make sure you know what gases you’re dealing with before using them. There are a wide range of gases that are harmful in different ways

Vapours – Solvent vapours released from adhesives, glues, paints, inks

Mists – Released from sprays, jets, hand dispensers

Fumes – Created from heating a solid, e.g created when welding. Strong and strict control measures around the extraction of the potentially harmful fumes

What are the COSHH hazard classes?

COSHH symbols are used to identify the COSHH hazard classes. COSHH symbols relate to specific types of harm that can occur from harmful materials or substances, and there are 9 official COSHH symbols in total; corrosive, harmful, explosive, flammable, irritant, oxidising, toxic, health hazard and environmental hazard. Most products have COSHH symbols on their packaging to inform users if the material or substance is harmful. Here are the symbols:

COSHH regulations
COSHH Symbols

What is a COSHH regulations assessment?

It’s the employer’s responsibility to perform a COSHH Assessment to understand the level of risk that exists within the workplace. The COSHH Assessment includes a review of hazardous properties, looking at how they are used and identifying any control measures needed to prevent harm to health. It’s the employers responsibility to ensure COSHH regulations and prevention processes are being followed.

Assess the risks

Think about how workers might be exposed, who might be exposed, how to control the risks, who needs to carry out the action and when the action is needed.

Control the risks

Eliminate unnecessary substances or replace substances where a safer alternative is available and consider whether a process can be changed to so it results in less exposure. If a substance is not directly replaceable, adequate control measures must be put in place to reduce exposure.

Training and educating staff about any risks to health from hazardous substances is critical. Hanging a COSHH poster in the workplace to show a clear list of hazard symbols for staff to familiarise themselves with is a good way to raise awareness.

As the employer, it is your responsibility to ensure that workers understand the policies around COSHH regulations and what it means for them. This may include which hazards are present, necessary training and how the risks are being controlled.

COSHH Regulations Poster

Is Your Home Gas Safe?

Gas boilers, heaters, fires and cookers are common in households across the UK. However, many people are unaware of the dangers of poor maintenance of this type of appliance. Is your home gas safe?

Dangerous gas appliances

Faulty gas appliances can produce toxic carbon monoxide gas as a result of incomplete combustion. Carbon monoxide is odourless and colourless meaning that without a detector, its presence cannot be identified. Even if your gas burning appliances are regularly serviced by a qualified engineer, it is possible for faults to occur. Alongside maintaining household appliances, the best way to keep your home gas safe is to install a CO alarm.

Carbon Monoxide emissions from a poorly fitted, poorly ventilated or faulty gas appliance can be deadly. On average, 50 people in the UK are killed each year by CO poisoning, with 4,000 admitted to hospital. There are also an unknown number of people who have suffered some degree of carbon monoxide poisoning, and either do not report it or are mis-diagnosed as the symptoms are very similar to common flu.

Dangers of unqualified gas fitters

The Gas Safe Register has highlighted the dangers of unqualified fitters, reporting that when inspected by a registered Gas Safe Engineer, 79% of boilers originally installed by unqualified fitters are putting occupants at risk, or are classified as immediately dangerous. Similar statistics published by Gas Safety Week show that half of all gas fires inspected by a registered Gas Safe Engineer are unsafe.

The Gas Safe Register logo is a recognisable yellow triangle.
The Gas Safe Register logo is recognisable

Maintaining gas appliances

If you have a gas appliance, you should have it serviced every year. Always ensure that repairs or new installations are only carried out by a qualified and registered Gas Safe Engineer. Regular servicing is the best way to prevent faults, and keep your family safe from deadly CO gas. Check to see if loved ones and vulnerable friends or neighbours have an up to date gas safety certificate.

Remember to check whether the engineer in your home appears on the gas safety register before allowing them to start work.
Only registered Gas Safe engineers should service the gas burning appliances in your home

The Gas Safety watch dog is urging consumers to always check the credentials of any gas fitter. This should always be done before allowing them to do any work on a gas appliance. They are also asking the public to inform them of any rogue installers who are claiming to be qualified, but do not appear on the Gas Safety Register.

Get gas safe – Importance of installing CO alarms

You should always install a carbon monoxide alarm to protect your household from the risk of carbon monoxide poisoning, especially because carbon monoxide can travel through adjoining walls. Therefore, even if you don’t have any gas appliances, or are certain that every appliance in your home is gas safe, a detector is the only way to have complete peace of mind.

Many detectors have a long life, and so remain reliable for up to a decade. With options for audio and visual cues, there is an alarm suitable for everyone. Check that every CO alarm in your home is marked BS EN 50291 and displays the British Standards’ Kitemark. If you can’t see these markings, or need to replace an old device, you can find a selection of CO alarms on our website that are suitable for use at home.